Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Nature ; 618(7966): 855-861, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316664

RESUMO

CRISPR-Cas adaptive immune systems capture DNA fragments from invading mobile genetic elements and integrate them into the host genome to provide a template for RNA-guided immunity1. CRISPR systems maintain genome integrity and avoid autoimmunity by distinguishing between self and non-self, a process for which the CRISPR/Cas1-Cas2 integrase is necessary but not sufficient2-5. In some microorganisms, the Cas4 endonuclease assists CRISPR adaptation6,7, but many CRISPR-Cas systems lack Cas48. Here we show here that an elegant alternative pathway in a type I-E system uses an internal DnaQ-like exonuclease (DEDDh) to select and process DNA for integration using the protospacer adjacent motif (PAM). The natural Cas1-Cas2/exonuclease fusion (trimmer-integrase) catalyses coordinated DNA capture, trimming and integration. Five cryo-electron microscopy structures of the CRISPR trimmer-integrase, visualized both before and during DNA integration, show how asymmetric processing generates size-defined, PAM-containing substrates. Before genome integration, the PAM sequence is released by Cas1 and cleaved by the exonuclease, marking inserted DNA as self and preventing aberrant CRISPR targeting of the host. Together, these data support a model in which CRISPR systems lacking Cas4 use fused or recruited9,10 exonucleases for faithful acquisition of new CRISPR immune sequences.


Assuntos
Biocatálise , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Genoma Bacteriano , Integrases , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Microscopia Crioeletrônica , DNA/imunologia , DNA/metabolismo , Exonucleases/química , Exonucleases/metabolismo , Exonucleases/ultraestrutura , Integrases/química , Integrases/metabolismo , Integrases/ultraestrutura , Genoma Bacteriano/genética
2.
J Biol Chem ; 299(6): 104730, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084813

RESUMO

Integration of retroviral DNA into the host genome involves the formation of integrase (IN)-DNA complexes termed intasomes. Further characterization of these complexes is needed to understand their assembly process. Here, we report the single-particle cryo-EM structure of the Rous sarcoma virus (RSV) strand transfer complex (STC) intasome produced with IN and a preassembled viral/target DNA substrate at 3.36 Å resolution. The conserved intasome core region consisting of IN subunits contributing active sites interacting with viral/target DNA has a resolution of 3 Å. Our structure demonstrated the flexibility of the distal IN subunits relative to the IN subunits in the conserved intasome core, similar to results previously shown with the RSV octameric cleaved synaptic complex intasome produced with IN and viral DNA only. An extensive analysis of higher resolution STC structure helped in the identification of nucleoprotein interactions important for intasome assembly. Using structure-function studies, we determined the mechanisms of several IN-DNA interactions critical for assembly of both RSV intasomes. We determined the role of IN residues R244, Y246, and S124 in cleaved synaptic complex and STC intasome assemblies and their catalytic activities, demonstrating differential effects. Taken together, these studies advance our understanding of different RSV intasome structures and molecular determinants involved in their assembly.


Assuntos
Integrases , Vírus do Sarcoma de Rous , Integração Viral , DNA Viral/química , DNA Viral/ultraestrutura , Integrases/química , Integrases/ultraestrutura , Vírus do Sarcoma de Rous/genética , Vírus do Sarcoma de Rous/química , Microscopia Crioeletrônica
3.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35316170

RESUMO

Uropathogenic Escherichia coli (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating E. coli fim gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using fimA-lux, fimB-lux, and fimE-lux fusions on single copy number plasmids. We have determined that a mutation in gadE increased transcription of all three fim genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the gadE mutation restored fim gene transcription to wild-type levels. Moreover, mutations in gadX, gadW, crp, and cya also affected transcription of the three fim genes. To verify the role GadE plays in type 1 pilus expression, the NU149 gadE UPEC strain was tested. The gadE mutant had higher fimE gene transcript levels, a higher frequency of Phase-OFF positioning of fimS, and hemagglutination titres that were lower in strain NU149 gadE cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC fim genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off fim gene expression.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Uropatogênica , Animais , Proteínas de Ligação a DNA/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Integrases/química , Integrases/genética , Integrases/metabolismo , Camundongos , Transcrição Gênica , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo
4.
Biochemistry ; 61(2): 67-76, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34985267

RESUMO

The Cre-loxP gene editing tool enables site-specific editing of DNA without leaving lesions that must be repaired by error-prone cellular processes. Cre recombines two 34-bp loxP DNA sites that feature a pair of palindromic recombinase-binding elements flanking an asymmetric 8-bp spacer region, via assembly of a tetrameric intasome complex and formation of a Holliday junction intermediate. Recombination proceeds by coordinated nucleophilic attack by pairs of catalytic tyrosine residues on specific phosphodiester bonds in the spacer regions of opposing strands. Despite not making base-specific contacts with the asymmetric spacer region of the DNA, Cre exhibits a preference for initial cleavage on one of the strands, suggesting that intrinsic properties of the uncontacted 8-bp spacer region give rise to this preference. Furthermore, little is known about the structural and dynamic features of the loxP spacer that make it a suitable target for Cre. To enable NMR spectroscopic studies of the spacer, we have aimed to identify a fragment of the 34-bp loxP site that retains the structural features of the spacer while minimizing the spectral crowding and line-broadening seen in longer oligonucleotides. Sequence-specific chemical shift differences between spacer oligos of different lengths, and of a mutant that inverts strand cleavage order, reveal how both nearest-neighbor and next-nearest-neighbor effects dominate the chemical environment experienced by the spacer. We have identified a 16-bp oligonucleotide that preserves the structural environment of the spacer, setting the stage for NMR-based structure determination and dynamics investigations.


Assuntos
Bacteriófago P1/química , DNA Intergênico/química , Oligonucleotídeos/química , Bacteriófago P1/metabolismo , Sequência de Bases , DNA Intergênico/metabolismo , Integrases/química , Integrases/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
5.
Nat Rev Microbiol ; 20(1): 20-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244677

RESUMO

A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.


Assuntos
Integrases/química , Integrases/metabolismo , Retroviridae/enzimologia , Integração Viral , Cristalografia por Raios X , DNA Viral/genética , Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/enzimologia , HIV-1/metabolismo , Humanos , Integrases/genética , Modelos Moleculares , Conformação Proteica , Retroviridae/classificação
6.
Biomolecules ; 11(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944553

RESUMO

Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast with other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 s, PFV intasomes do not commit to target DNA during their reaction lifetime. Together, these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.


Assuntos
DNA/metabolismo , Integrases/química , Integrases/metabolismo , Spumavirus/enzimologia , Acetatos/metabolismo , Sítios de Ligação , Cloretos/metabolismo , Esterificação , Manganês/metabolismo , Oligonucleotídeos , Spumavirus/química , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
J Biol Chem ; 297(4): 101093, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416236

RESUMO

Long-terminal repeat (LTR) retrotransposons are genetic elements that, like retroviruses, replicate by reverse transcription of an RNA intermediate into a complementary DNA (cDNA) that is next integrated into the host genome by their own integrase. The Ty1 LTR retrotransposon has proven to be a reliable working model to investigate retroelement integration site preference. However, the low yield of recombinant Ty1 integrase production reported so far has been a major obstacle for structural studies. Here we analyze the biophysical and biochemical properties of a stable and functional recombinant Ty1 integrase highly expressed in E.coli. The recombinant protein is monomeric and has an elongated shape harboring the three-domain structure common to all retroviral integrases at the N-terminal half, an extra folded region, and a large intrinsically disordered region at the C-terminal half. Recombinant Ty1 integrase efficiently catalyzes concerted integration in vitro, and the N-terminal domain displays similar activity. These studies that will facilitate structural analyses may allow elucidating the molecular mechanisms governing Ty1 specific integration into safe places in the genome.


Assuntos
Integrases/química , Proteínas Intrinsicamente Desordenadas/química , Retroelementos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Integrases/genética , Integrases/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Bacteriol ; 203(16): e0070320, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34060907

RESUMO

Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called att sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase att sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn directs the relative trajectories of the CC motifs on each subunit of the att-bound integrase dimer. Recombination between compatible dimer-bound att sites requires minimal-length CC motifs and 14 residues surrounding the tip where the pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggest that molecular interactions between CC motif tips may differ in integrative (attP × attB) and excisive (attL × attR) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminately, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after the initial assembly of the integrase synaptic tetramer. IMPORTANCE The robust and exquisitely regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage and, in the case of the A118 prophage, are an important virulence factor of Listeria monocytogenes. The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.


Assuntos
Bacteriófagos/enzimologia , Pareamento Cromossômico , Integrases/química , Integrases/metabolismo , Listeria monocytogenes/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Integração Viral , Motivos de Aminoácidos , Sítios de Ligação Microbiológicos , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/fisiologia , Integrases/genética , Listeria monocytogenes/genética , Prófagos/química , Prófagos/enzimologia , Prófagos/genética , Prófagos/fisiologia , Domínios Proteicos , Recombinação Genética , Proteínas Virais/genética
9.
FEBS J ; 288(22): 6410-6427, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34043859

RESUMO

Large serine integrases (LSIs) offer tremendous potential for rapid genetic engineering as well as building biological systems capable of responding to stimuli and integrating information. Currently, there is no unified metric for directly measuring the enzymatic characteristics of LSI function, which hinders evaluation of their suitability to specific applications. Here, we present an experimental protocol for recording DNA recombination in HEK293 cells in real-time through fluorophore expression and software which fits the kinetic data to a model tailored to LSI recombination dynamics. Our model captures the activity of LSIs as three parameters: expression level (Kexp ), catalytic rate (kcat ), and substrate affinity (Kd ). The expression level and catalytic rate for phiC31 and Bxb1 varied greatly, suggesting disparate routes to high recombination efficiencies. Moreover, the expression level and substrate affinity jointly impacted downstream reporter expression, potentially by obstructing transcriptional machinery. We validated these observations by swapping between promoters and mutating key recombinase residues and DNA recognition sites to individually modulate each parameter. Our model for identifying key LSI parameters in cellulo provides insight into selecting the optimal recombinase for various applications as well as for guiding the engineering of improved LSIs.


Assuntos
Integrases/metabolismo , Serina/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Integrases/química , Cinética , Modelos Moleculares , Serina/química , Software
10.
Nat Commun ; 12(1): 2571, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958590

RESUMO

CRISPR-Cas systems provide adaptive immunity in bacteria and archaea, beginning with integration of foreign sequences into the host CRISPR genomic locus and followed by transcription and maturation of CRISPR RNAs (crRNAs). In some CRISPR systems, a reverse transcriptase (RT) fusion to the Cas1 integrase and Cas6 maturase creates a single protein that enables concerted sequence integration and crRNA production. To elucidate how the RT-integrase organizes distinct enzymatic activities, we present the cryo-EM structure of a Cas6-RT-Cas1-Cas2 CRISPR integrase complex. The structure reveals a heterohexamer in which the RT directly contacts the integrase and maturase domains, suggesting functional coordination between all three active sites. Together with biochemical experiments, our data support a model of sequential enzymatic activities that enable CRISPR sequence acquisition from RNA and DNA substrates. These findings highlight an expanded capacity of some CRISPR systems to acquire diverse sequences that direct CRISPR-mediated interference.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Endonucleases/química , Integrases/química , Piscirickettsiaceae/química , DNA Polimerase Dirigida por RNA/química , Proteínas Associadas a CRISPR/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/metabolismo , Proteínas Recombinantes
11.
Oncogene ; 40(22): 3815-3825, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958722

RESUMO

The integration of viral DNA into the host genome is mediated by viral integrase, resulting in the accumulation of double-strand breaks. Integrase-derived peptides (INS and INR) increase the number of integration events, leading to escalated genomic instability that induces apoptosis. CD24 is a surface protein expressed mostly in cancer cells and is very rarely found in normal cells. Here, we propose a novel targeted cancer therapeutic platform based on the lentiviral integrase, stimulated by integrase-derived peptides, that are specifically delivered to cancerous cells via CD24 antigen-antibody targeting. INS and INR were synthesized and humanized and anti-CD24 antibodies were fused to the lentivirus envelope. The activity, permeability, stability, solubility, and toxicity of these components were analyzed. Cell death was measured by fluorescent microscopy and enzymatic assays and potency were tested in vitro and in vivo. Lentivirus particles, containing non-functional DNA led to massive cell death (40-70%). Raltegravir, an antiretroviral drug, inhibited the induction of apoptosis. In vivo, single and repeated administrations of INS/INR were well tolerated without any adverse effects. Tumor development in nude mice was significantly inhibited (by 50%) as compared to the vehicle arm. In summary, a novel and generic therapeutic platform for selective cancer cell eradication with excellent efficacy and safety are presented.


Assuntos
Antígeno CD24/biossíntese , Integrases/farmacologia , Lentivirus/enzimologia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Fragmentos de Peptídeos/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Antígeno CD24/imunologia , Linhagem Celular Tumoral , Humanos , Integrases/química , Lentivirus/genética , Lentivirus/imunologia , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/virologia , Fragmentos de Peptídeos/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Structure ; 29(8): 886-898.e6, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592170

RESUMO

The extraterminal (ET) domain of BRD3 is conserved among BET proteins (BRD2, BRD3, BRD4), interacting with multiple host and viral protein-protein networks. Solution NMR structures of complexes formed between the BRD3 ET domain and either the 79-residue murine leukemia virus integrase (IN) C-terminal domain (IN329-408) or its 22-residue IN tail peptide (IN386-407) alone reveal similar intermolecular three-stranded ß-sheet formations. 15N relaxation studies reveal a 10-residue linker region (IN379-388) tethering the SH3 domain (IN329-378) to the ET-binding motif (IN389-405):ET complex. This linker has restricted flexibility, affecting its potential range of orientations in the IN:nucleosome complex. The complex of the ET-binding peptide of the host NSD3 protein (NSD3148-184) and the BRD3 ET domain includes a similar three-stranded ß-sheet interaction, but the orientation of the ß hairpin is flipped compared with the two IN:ET complexes. These studies expand our understanding of molecular recognition polymorphism in complexes of ET-binding motifs with viral and host proteins.


Assuntos
Histona-Lisina N-Metiltransferase/química , Integrases/química , Vírus da Leucemia Murina/enzimologia , Proteínas Nucleares/química , Fatores de Transcrição/química , Sítios de Ligação , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Integrases/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
PLoS One ; 15(10): e0236616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33044964

RESUMO

Asexual blood stages of the malaria parasite are readily amenable to genetic modification via homologous recombination, allowing functional studies of parasite genes that are not essential in this part of the life cycle. However, conventional reverse genetics cannot be applied for the functional analysis of genes that are essential during asexual blood-stage replication. Various strategies have been developed for conditional mutagenesis of Plasmodium, including recombinase-based gene deletion, regulatable promoters, and mRNA or protein destabilization systems. Among these, the dimerisable Cre (DiCre) recombinase system has emerged as a powerful approach for conditional gene deletion in P. falciparum. In this system, the bacteriophage Cre is expressed in the form of two separate, enzymatically inactive polypeptides, each fused to a different rapamycin-binding protein. Rapamycin-induced heterodimerization of the two components restores recombinase activity. We have implemented the DiCre system in the rodent malaria parasite P. berghei, and show that rapamycin-induced excision of floxed DNA sequences can be achieved with very high efficiency in both mammalian and mosquito parasite stages. This tool can be used to investigate the function of essential genes not only in asexual blood stages, but also in other parts of the malaria parasite life cycle.


Assuntos
Deleção de Genes , Edição de Genes , Genes de Protozoários/genética , Integrases/metabolismo , Malária/parasitologia , Mutagênese , Plasmodium berghei/genética , Animais , Feminino , Integrases/química , Integrases/genética , Estágios do Ciclo de Vida , Malária/genética , Malária/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
14.
Proc Natl Acad Sci U S A ; 117(40): 24849-24858, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32968014

RESUMO

Mechanistic understanding of DNA recombination in the Cre-loxP system has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution nuclear magnetic resonance (NMR) spectroscopy to discover the link between intrinsic flexibility and function in Cre recombinase. Transverse relaxation-optimized spectroscopy (TROSY) NMR spectra show the N-terminal and C-terminal catalytic domains (CreNTD and CreCat) to be structurally independent. Amide 15N relaxation measurements of the CreCat domain reveal fast-timescale dynamics in most regions that exhibit conformational differences in active and inactive Cre protomers in crystallographic tetramers. However, the C-terminal helix αN, implicated in assembly of synaptic complexes and regulation of DNA cleavage activity via trans protein-protein interactions, is unexpectedly rigid in free Cre. Chemical shift perturbations and intra- and intermolecular paramagnetic relaxation enhancement (PRE) NMR data reveal an alternative autoinhibitory conformation for the αN region of free Cre, wherein it packs in cis over the protein DNA binding surface and active site. Moreover, binding to loxP DNA induces a conformational change that dislodges the C terminus, resulting in a cis-to-trans switch that is likely to enable protein-protein interactions required for assembly of recombinogenic Cre intasomes. These findings necessitate a reexamination of the mechanisms by which this widely utilized gene-editing tool selects target sites, avoids spurious DNA cleavage activity, and controls DNA recombination efficiency.


Assuntos
DNA/metabolismo , Integrases/química , Integrases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , Integrases/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos
15.
Sci Rep ; 10(1): 13985, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814809

RESUMO

The tyrosine-type site-specific DNA recombinase Cre recombines its target site, loxP, with high activity and specificity without cross-recombining the target sites of highly related recombinases. Understanding how Cre achieves this precision is key to be able to rationally engineer site-specific recombinases (SSRs) for genome editing applications. Previous work has revealed key residues for target site selectivity in the Cre/loxP and the related Dre/rox recombinase systems. However, enzymes in which these residues were changed to the respective counterpart only showed weak activity on the foreign target site. Here, we use molecular modeling and dynamics simulation techniques to comprehensively explore the mechanisms by which these residues determine target recognition in the context of their flanking regions in the protein-DNA interface, and we establish a structure-based rationale for the design of improved recombination activities. Our theoretical models reveal that nearest-neighbors to the specificity-determining residues are important players for enhancing SSR activity on the foreign target site. Based on the established rationale, we design new Cre variants with improved rox recombination activities, which we validate experimentally. Our work provides new insights into the target recognition mechanisms of Cre-like recombinases and represents an important step towards the rational design of SSRs for applied genome engineering.


Assuntos
Aminoácidos/química , DNA Nucleotidiltransferases/química , DNA/química , Engenharia Genética/métodos , Integrases/química , Recombinação Genética , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Sítios de Ligação/genética , DNA/genética , DNA/metabolismo , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Humanos , Integrases/genética , Integrases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos
16.
J Microbiol Biotechnol ; 30(9): 1273-1281, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32699199

RESUMO

Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.


Assuntos
Terapia Genética , Vetores Genéticos , Integrases/metabolismo , Spumavirus/enzimologia , Domínio Catalítico , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Genoma Viral , Humanos , Integrases/química , Integrases/genética , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Integração Viral
17.
Nucleic Acids Res ; 48(12): 6413-6430, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479633

RESUMO

Streptomyces phage ϕC31 integrase (Int)-a large serine site-specific recombinase-is autonomous for phage integration (attP x attB recombination) but is dependent on the phage coded gp3, a recombination directionality factor (RDF), for prophage excision (attL x attR recombination). A previously described activating mutation, E449K, induces Int to perform attL x attR recombination in the absence of gp3, albeit with lower efficiency. E449K has no adverse effect on the competence of Int for attP x attB recombination. Int(E449K) resembles Int in gp3 mediated stimulation of attL x attR recombination and inhibition of attP x attB recombination. Using single-molecule analyses, we examined the mechanism by which E449K activates Int for gp3-independent attL x attR recombination. The contribution of E449K is both thermodynamic and kinetic. First, the mutation modulates the relative abundance of Int bound attL-attR site complexes, favoring pre-synaptic (PS) complexes over non-productively bound complexes. Roughly half of the synaptic complexes formed from Int(E449K) pre-synaptic complexes are recombination competent. By contrast, Int yields only inactive synapses. Second, E449K accelerates the dissociation of non-productively bound complexes and inactive synaptic complexes formed by Int. The extra opportunities afforded to Int(E499K) in reattempting synapse formation enhances the probability of success at fruitful synapsis.


Assuntos
Mutação com Ganho de Função , Integrases/metabolismo , Siphoviridae/enzimologia , Proteínas Virais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Integrases/química , Integrases/genética , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Recombinação Genética , Siphoviridae/genética , Proteínas Virais/química , Proteínas Virais/genética
18.
Nucleic Acids Res ; 48(8): 4371-4381, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182357

RESUMO

In Cre site-specific recombination, the synaptic intermediate is a recombinase homotetramer containing a pair of loxP DNA target sites. The enzyme system's strand-exchange mechanism proceeds via a Holliday-junction (HJ) intermediate; however, the geometry of DNA segments in the synapse has remained highly controversial. In particular, all crystallographic structures are consistent with an achiral, planar Holliday-junction (HJ) structure, whereas topological assays based on Cre-mediated knotting of plasmid DNAs are consistent with a right-handed chiral junction. We use the kinetics of loop closure involving closely spaced (131-151 bp) loxP sites to investigate the in-aqueo ensemble of conformations for the longest-lived looped DNA intermediate. Fitting the experimental site-spacing dependence of the loop-closure probability, J, to a statistical-mechanical theory of DNA looping provides evidence for substantial out-of-plane HJ distortion, which unequivocally stands in contrast to the square-planar intermediate geometry from Cre-loxP crystal structures and those of other int-superfamily recombinases. J measurements for an HJ-isomerization-deficient Cre mutant suggest that the apparent geometry of the wild-type complex is consistent with temporal averaging of right-handed and achiral structures. Our approach connects the static pictures provided by crystal structures and the natural dynamics of macromolecules in solution, thus advancing a more comprehensive dynamic analysis of large nucleoprotein structures and their mechanisms.


Assuntos
DNA/química , Integrases/química , Recombinação Genética , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico
19.
J Biol Chem ; 295(3): 690-700, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31771978

RESUMO

Genetic lineage tracing is widely used to study organ development and tissue regeneration. Multicolor reporters are a powerful platform for simultaneously tracking discrete cell populations. Here, combining Dre-rox and Cre-loxP systems, we generated a new dual-recombinase reporter system, called Rosa26 traffic light reporter (R26-TLR), to monitor red, green, and yellow fluorescence. Using this new reporter system with the three distinct fluorescent reporters combined on one allele, we found that the readouts of the two recombinases Cre and Dre simultaneously reflect Cre+Dre-, Cre-Dre+, and Cre+Dre+ cell lineages. As proof of principle, we show specific labeling in three distinct progenitor/stem cell populations, including club cells, AT2 cells, and bronchoalveolar stem cells, in Sftpc-DreER;Scgb1a1-CreER;R26-TLR mice. By using this new dual-recombinase reporter system, we simultaneously traced the cell fate of these three distinct cell populations during lung repair and regeneration, providing a more comprehensive picture of stem cell function in distal airway repair and regeneration. We propose that this new reporter system will advance developmental and regenerative research by facilitating a more sophisticated genetic approach to studying in vivo cell fate plasticity.


Assuntos
Linhagem da Célula/genética , Integrases/genética , Recombinases/genética , Células-Tronco/citologia , Alelos , Animais , Diferenciação Celular/genética , Fluorescência , Marcação de Genes , Genes Reporter/genética , Integrases/química , Camundongos , Camundongos Transgênicos/genética , Células-Tronco/química
20.
Nanomedicine (Lond) ; 14(21): 2799-2814, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31724479

RESUMO

Aim: Extracellular vesicles (EVs) are desirable delivery vehicles for therapeutic cargoes. We aimed to load EVs with Cre recombinase protein and determine whether functional delivery to cells could be improved by using endosomal escape enhancing compounds. Materials & methods: Overexpressed CreFRB protein was actively loaded into EVs by rapalog-induced dimerization to CD81FKBP, or passively loaded by overexpression in the absence of rapalog. Functional delivery of CreFRB was analysed using a HEK293 Cre reporter cell line in the absence and presence of endosomal escape enhancing compounds. Results: The EVs loaded with CreFRB by both active and passive mechanisms were able to deliver functional CreFRB to recipient cells only in the presence of endosomal escape enhancing compounds chloroquine and UNC10217938A. Conclusion: The use of endosomal escape enhancing compounds in conjunction with EVs loaded with therapeutic cargoes may improve efficacy of future EV based therapeutics.


Assuntos
Endossomos/metabolismo , Vesículas Extracelulares/química , Integrases/química , Nanocápsulas/química , Transporte Biológico , Cloroquina/química , Cloroquina/metabolismo , Liberação Controlada de Fármacos , Elementos Facilitadores Genéticos , Vesículas Extracelulares/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Integrases/genética , Integrases/metabolismo , Tamanho da Partícula , Multimerização Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...